

SBEED (out of the Deadly Triad): Convergent Reinforcement Learning with Nonlinear Function Approximation

Bo Dai^{1 \rightarrow 2}, Albert Shaw¹, Lihong Li², Lin Xiao³, Niao He⁴, Zhen Liu¹, Jianshu Chen⁵, Le Song¹

¹Gatech, ²Google Brain, ³Microsoft Research, ⁴UIUC, ⁵Tencent AI

Background

- $\bullet\,$ This talk: RL \approx solving Bellman equation based on data
- Approx. dynamic programming (DQN, ...) inherently unstable
- Remained challenging for decades "deadly triad" (Sutton 15)

Contributions

- 1. Bellman equation reformulated as a saddle-point problem
- 2. First provably convergent ADP algorithm (SBEED) with general nonlinear function approximation
- 3. Empirical validation in simulated robotics tasks (Mujoco)

- Background
- Saddle-point Reformulation of Bellman Equation
- SBEED Learning
- Conclusions

 $M = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- Set of states ${\mathcal S}$
- \bullet Set of actions ${\cal A}$
- Transition probabilities P(s'|s, a)
- Immediate reward R(s, a)
- Discount factor $\gamma \in (0,1)$

(from Wikipedia)

Optimal value function V^* satisfies Bellman equation

$$\forall s \in \mathcal{S}, \ V^*(s) = \underbrace{\max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} [V^*(s')] \right)}_{\mathcal{T} V^*(s)}$$

Well-known facts of Bellman operator \mathcal{T} :

- \mathcal{T} is γ -contraction: $\|\mathcal{T}V_1 \mathcal{T}V_2\|_{\infty} \leq \gamma \|V_1 V_2\|_{\infty}$
- Hence, $V, \mathcal{T}V, \mathcal{T}^2V, \mathcal{T}^3V, \cdots \rightarrow V^*$ ("fixed point")
- Mathematical foundation of value iteration, TD(λ), Q-learning, etc. in the exact (\approx finite-MDP) case

In practice, V^* is often approximated

- Eg: least-squares fit on linear models or neural networks, ...
- \bullet Composing ${\mathcal T}$ and approximation loses contraction
- Many known divergent examples Baird (93), Boyan & Moore (95), Tsitsiklis & Van Roy (96), ...
- Limited positive theory or algorithms Gordon (96), Tsitsiklis & Van Roy (97), Lagoudakis & Parr (03), Sutton et al. (08, 09), Maei et al. (10), ...

Functional Approximations and Dynamic Programming

A major open problem for decades.

By Richard Bellman and Stuart Dreyfus Math. Tables & Other Aids Comp. (1959)

Does It Matter in Practice?

Many empirical successes of (double, dueling) DQN, A3C, ... in video games, Go, robotics, dialogue management, ... but often with surprises:

Existing RL algorithms risk divergence in the "deadly triad":

- (nonlinear) function approximation
- bootstrapping
- off-policy learning

- Background
- Saddle-point Reformulation of Bellman Equation
- SBEED Learning
- Conclusions

A natural objective function for solving V = TV:

$$\min_{V} \underbrace{\|V - \mathcal{T}V\|^{2}}_{\text{"Bellman error/residual"}}$$
$$= \min_{V} \mathbb{E}_{s} \left[(V(s) - \max_{a} (R(s, a) + \gamma \mathbb{E}_{s'|s, a} [\mathbf{V}(s')])^{2} \right]$$

- Difficulty #1: breaks smoothness and continuity
- Difficulty #2: typical SGD gives biased gradient, known as "double sample" issue (Baird 95):

$$\left(\dots + \gamma \mathbb{E}_{s'|s,s}[V_w(s')]\right)^2 \quad \neq \quad \mathbb{E}_{s'|s,s}\left[\left(\dots + \gamma V_w(s')\right)^2\right]$$

The smoothed Bellman operator T_{λ} may be derived differently Rawlik+ (12), Fox+ (16), Ne+ (17), Nachum+(17), Asadi & Littman (17), ...

$$\mathcal{T}_{\lambda}V(s) := \max_{\pi(\cdot|s)} \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \mathbb{E}_{s'|s,a}[V(s')] \right) + \lambda H(\pi(\cdot|s))$$

- Still a $\gamma\text{-contraction}$
- Existence and uniqueness of fixed point V^*_λ
- Controlled bias: $\left\|V_{\lambda}^{*}-V^{*}\right\|_{\infty}=\mathcal{O}(\lambda/(1-\gamma))$
- Temporal consistency (as in PCL of Nachum+ (17))

$$\forall s, a: \quad V^*_{\lambda}(s) = R(s, a) + \gamma \mathbb{E}_{s'|s, a}[V^*_{\lambda}(s)] - \lambda \log \pi^*_{\lambda}(a|s)$$

$$\begin{split} \min_{V} & \mathbb{E}_{s} \left[(V(s) - \max_{a} (R(s, a) + \gamma \mathbb{E}_{s'|s, a}[\mathbf{V}(s')])^{2} \right] \\ & \downarrow \quad \text{(by Nesterov smoothing)} \\ & \min_{V, \pi} & \mathbb{E}_{s, a} \left[\left(\underbrace{R(s, a) + \gamma \mathbb{E}_{s'|s, a}[\mathbf{V}(s')] - \lambda \log \pi(a|s) - V(s)}_{\text{denoted } x_{sa}} \right)^{2} \right] \\ & \downarrow \quad \text{(L-F transform: } x_{sa}^{2} = \max_{y \in \mathbb{R}} (2x_{sa}y - y^{2})) \\ & \min_{V, \pi} & \max_{\nu \in \mathbb{R}^{S \times \mathcal{A}}} \mathbb{E}_{s, a, s'} \left[(2\nu(s, a)x_{s, a} - \nu(s, a)^{2}) \right] \end{split}$$

The last step also applies the interchangeability principle (Rockafellar & Wets 88; Shapiro & Dentcheva 14; Dai+ 17) We have now turned a fixed point into a saddle point:

$$\min_{V,\pi} \max_{\nu} \mathbb{E}_{s,a,s'} \Big[2\nu(s,a) \Big(R(s,a) + \gamma V(s') - \lambda \log \pi(a|s) - V(s) \Big) \\ - \nu(s,a)^2 \Big]$$

- Well-defined objective without requiring double samples
- May be optimized by gradient methods (SGD/BackProp, ...)
- See paper for a slightly more general version
- Special cases: GTD2, PCL, ...
- Inner maximum achieved when ν equals λ -smoothed Bellman error

- Background
- Saddle-point Reformulation of Bellman Equation
- SBEED Learning
- Conclusions

Algorithmic ideas

- Parameterize $(V, \pi; \nu)$ by $(w_V, w_\pi; w_\nu)$
- Stochastic-gradient updates on (w_V, w_π) and ascent on w_ν
 - Two-time-scale updates for primal and dual variables; or
 - Exact maximization if concave in w_{ν}
- Our implementation uses stochastic mirror descent

Algorithmic advantages

- Agnostic to whether data is on- or off-policy
- May be used in batch (e.g., experience replay) or online mode
- Extensible to multi-step and eligibility traces cases
- Efficiently implemented (only first-order updates needed)

Define $\bar{\ell}(V,\pi) := \max_{\nu} L(V,\pi,\nu)$, and assume

- $\nabla \overline{\ell}$ is Lipschitz-continuous
- the stochastic gradient has finite variance
- stepsizes are properly set

Theorem. SBEED solution satisfies $\mathbb{E}[\|\nabla \bar{\ell}(V_{\hat{w}}, \pi_{\hat{w}})\|] \to \mathbf{0}$

- Building on results of Ghadimi & Lan (13)
- See paper for variants of convergence results ...
- ... and statistical/generalization analyses

Experiments

- Use Mujoco on OpenAI as benchmark
- Compare to state-of-the-art baselines:
 - Dual-AC (Dai et al. 18)
 - TRPO (Schulman et al. 15)
 - DDPG (Lillicrap et al. 15)

(from http://www.mujoco.org)

Role of Smoothing Parameter λ

Comparison against Baselines

- Background
- Saddle-point Reformulation of Bellman Equation
- SBEED Learning
- Conclusions

Conclusions

Contributions

- A saddle-point reformulation of Bellman equation
- New algorithm SBEED with guaranteed convergence
- Promising empirical results on standard benchmark

Further remarks

- Many directions for future research
- Much efforts of finding true gradient RL algorithms GTD (Sutton et al. 08), GTD2 (Sutton et al. 09), ...
- Deep connection to optimization Mahadevan et al. (14), Macua et al. (15), ...
- Stronger algorithms based on new optimization techniques Liu et al. (15, 16), Dai et al. (17, 18), Du et al. (17), Wang (17), Chen et al. (18), ...

APPENDIX

Divergence Example of Tsitsiklis & Van Roy (96)

Starting with $w^{(0)} \neq 0$, least-squares value iteration diverges when $\gamma > 5/6$, although V^* may be exactly represented (with $w^* = 0$).

Online SBEED Learning with Experience Replay

Algorithm 1 Online SBEED learning with experience replay

- 1: Initialize $w = (w_V, w_\pi, w_\rho)$ and π_b randomly, set ϵ .
- 2: for episode $i = 1, \ldots, T$ do
- 3: **for** size k = 1, ..., K **do**
- 4: Add new transition (s, a, r, s') into \mathcal{D} by executing behavior policy π_b .
- 5: end for

7:

6: for iteration $j = 1, \ldots, N$ do

$$\begin{array}{l} \text{Update } w_{\rho}^{i} \text{ by solving} \\ \min_{w_{\rho}} \ \widehat{\mathbb{E}}_{\{s,a,s'\}\sim\mathcal{D}} \left[\left(\delta(s,a,s') - \rho(s,a) \right)^{2} \right] \end{array}$$

- 8: Decay the stepsize ζ_j in rate $\mathcal{O}(1/j)$.
- 9: Compute the stochastic gradients w.r.t. w_V and w_{π} as $\widehat{\nabla}_{w_V} \overline{\ell}(V, \pi)$ and $\widehat{\nabla}_{w_{\pi}} \overline{\ell}(V, \pi)$.
- 10: Update the parameters of primal function by solving the prox-mappings, *i.e.*,

 $\begin{array}{ll} \text{update } V \colon & w_V^j = P_{w_V^{j-1}}(\zeta_j \widehat{\nabla}_{w_V} \bar{\ell}(V,\pi)) \\ \text{update } \pi \colon & w_\pi^j = P_{w_\pi^{j-1}}(\zeta_j \widehat{\nabla}_{w_\pi} \bar{\ell}(V,\pi)) \end{array}$

- 11: end for
- 12: Update behavior policy $\pi_b = \pi^N$.
- 13: end for

Role of Bootstrapping Distance *k*

Role of Dual Embedding η

