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Main Results

Background

• This talk: RL ≈ solving Bellman equation based on data

• Approx. dynamic programming (DQN, ...) inherently unstable

• Remained challenging for decades — “deadly triad” (Sutton 15)

Contributions

1. Bellman equation reformulated as a saddle-point problem

2. First provably convergent ADP algorithm (SBEED) with general

nonlinear function approximation

3. Empirical validation in simulated robotics tasks (Mujoco)
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Markov Decision Process (MDP)

M = 〈S,A,P,R, γ〉
• Set of states S
• Set of actions A
• Transition probabilities P(s ′|s, a)

• Immediate reward R(s, a)

• Discount factor γ ∈ (0, 1)

(from Wikipedia)



Bellman Equation and Dynamic Programming

Optimal value function V ∗ satisfies Bellman equation

∀s ∈ S, V ∗(s) = max
a∈A

(
R(s, a) + γEs′∼P(·|s,a)[V

∗(s ′)]
)

︸ ︷︷ ︸
T V ∗(s)

Well-known facts of Bellman operator T :

• T is γ-contraction: ‖T V1 − T V2‖∞ ≤ γ ‖V1 − V2‖∞
• Hence, V , T V , T 2V , T 3V , · · · → V ∗ (“fixed point”)

• Mathematical foundation of value iteration, TD(λ), Q-learning, etc.

in the exact (≈ finite-MDP) case



When Bellman Meets Gauss: Approximate DP

In practice, V ∗ is often approximated

• Eg: least-squares fit on linear models or neural networks, ...

• Composing T and approximation loses contraction

• Many known divergent examples

Baird (93), Boyan & Moore (95), Tsitsiklis & Van Roy (96), ...

• Limited positive theory or algorithms

Gordon (96), Tsitsiklis & Van Roy (97), Lagoudakis & Parr (03), Sutton

et al. (08, 09), Maei et al. (10), ...

A major open problem for decades.
Math. Tables & Other Aids Comp. (1959)



Does It Matter in Practice?

Many empirical successes of (double, dueling) DQN, A3C, ...

in video games, Go, robotics, dialogue management, ...

but often with surprises:



The Deadly Triad (Controlled Case)

Existing RL algorithms risk divergence in the “deadly triad”:

• (nonlinear) function approximation

• bootstrapping

• off-policy learning
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Why Solving Bellman Equation is Hard?

A natural objective function for solving V = T V :

min
V

‖V − T V ‖2︸ ︷︷ ︸
“Bellman error/residual”

= min
V

Es

[
(V (s)−max

a
(R(s, a) + γEs′|s,a[V(s′)])2

]

• Difficulty #1: breaks smoothness and continuity

• Difficulty #2: typical SGD gives biased gradient, known as “double

sample” issue (Baird 95):(
· · ·+ γEs′|s,a[Vw (s ′)]

)2 6= Es′|s,a
[
(· · ·+ γVw (s ′))2

]



Addressing Difficulty #1: Nesterov Smoothing

V (s) = max
a

(
R(s, a) + γEs′|s,a[V (s ′)]

)
ww�

V (s) = max
π(·|s)

∑
a

π(a|s)
(
R(s, a) + γEs′|s,a[V (s ′)]

)
+λH(π(·|s))︸ ︷︷ ︸

entropic regularization︸ ︷︷ ︸
:=TλV (s)

The smoothed Bellman operator Tλ may be derived differently

Rawlik+ (12), Fox+ (16), Ne+ (17), Nachum+(17), Asadi & Littman (17), ...



Properties of Tλ

TλV (s) := max
π(·|s)

∑
a

π(a|s)
(
R(s, a) + γEs′|s,a[V (s ′)]

)
+λH(π(·|s))

• Still a γ-contraction

• Existence and uniqueness of fixed point V ∗λ

• Controlled bias: ‖V ∗λ − V ∗‖∞ = O(λ/(1− γ))

• Temporal consistency (as in PCL of Nachum+ (17))

∀s, a : V ∗λ (s) = R(s, a) + γEs′|s,a[V ∗λ (s)]− λ log π∗λ(a|s)



Addressing Difficulty #2: Legendre-Fenchel Transformation

min
V

Es

[
(V (s)−max

a
(R(s, a) + γEs′|s,a[V(s′)])2

]
ww� (by Nesterov smoothing)

min
V ,π

Es,a


R(s, a) + γEs′|s,a[V(s′)]− λ log π(a|s)− V (s)︸ ︷︷ ︸

denoted xsa


2

ww� (L-F transform: x2sa = max
y∈R

(2xsay − y2))

min
V ,π

max
ν∈RS×A

Es,a,s′
[
(2ν(s, a)xs,a − ν(s, a)2)

]
The last step also applies the interchangeability principle

(Rockafellar & Wets 88; Shapiro & Dentcheva 14; Dai+ 17)



Reformulation of Bellman Equation

We have now turned a fixed point into a saddle point:

min
V ,π

max
ν

Es,a,s′

[
2ν(s, a)

(
R(s, a) + γV (s ′)− λ log π(a|s)− V (s)

)
− ν(s, a)2

]

• Well-defined objective without requiring double samples

• May be optimized by gradient methods (SGD/BackProp, ...)

• See paper for a slightly more general version

• Special cases: GTD2, PCL, ...

• Inner maximum achieved when ν equals λ-smoothed Bellman error
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SBEED: Smoothed Bellman Error EmbeDding

Algorithmic ideas

• Parameterize (V , π; ν) by (wV ,wπ;wν)

• Stochastic-gradient updates on (wV ,wπ) and ascent on wν

• Two-time-scale updates for primal and dual variables; or

• Exact maximization if concave in wν

• Our implementation uses stochastic mirror descent

Algorithmic advantages

• Agnostic to whether data is on- or off-policy

• May be used in batch (e.g., experience replay) or online mode

• Extensible to multi-step and eligibility traces cases

• Efficiently implemented (only first-order updates needed)



SBEED Convergence (Batch Case)

Define ¯̀(V , π):= maxν L(V , π, ν), and assume

• ∇¯̀ is Lipschitz-continuous

• the stochastic gradient has finite variance

• stepsizes are properly set

Theorem. SBEED solution satisfies E[
∥∥∇¯̀(Vŵ , πŵ )

∥∥]→ 0

• Building on results of Ghadimi & Lan (13)

• See paper for variants of convergence results ...

• ... and statistical/generalization analyses



Experiments

• Use Mujoco on OpenAI as benchmark

• Compare to state-of-the-art baselines:

• Dual-AC (Dai et al. 18)

• TRPO (Schulman et al. 15)

• DDPG (Lillicrap et al. 15)

(from http://www.mujoco.org)



Role of Smoothing Parameter λ



Comparison against Baselines
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Conclusions

Contributions

• A saddle-point reformulation of Bellman equation

• New algorithm SBEED with guaranteed convergence

• Promising empirical results on standard benchmark

Further remarks

• Many directions for future research

• Much efforts of finding true gradient RL algorithms

GTD (Sutton et al. 08), GTD2 (Sutton et al. 09), ...

• Deep connection to optimization

Mahadevan et al. (14), Macua et al. (15), ...

• Stronger algorithms based on new optimization techniques

Liu et al. (15, 16), Dai et al. (17, 18), Du et al. (17), Wang (17), Chen

et al. (18), ...



APPENDIX



Divergence Example of Tsitsiklis & Van Roy (96)

Starting with w (0) 6= 0,

least-squares value iteration diverges when γ > 5/6,

although V ∗ may be exactly represented (with w∗ = 0).



Online SBEED Learning with Experience Replay



Role of Bootstrapping Distance k



Role of Dual Embedding η


	Appendix
	Appendix

