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Main Results

Background

e This talk: RL = solving Bellman equation based on data

e Approx. dynamic programming (DQN, ...) inherently unstable

e Remained challenging for decades — “deadly triad” (Sutton 15)

Contributions

1.
2.

Bellman equation reformulated as a saddle-point problem

First provably convergent ADP algorithm (SBEED) with general
nonlinear function approximation

Empirical validation in simulated robotics tasks (Mujoco)
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Markov Decision Process (MDP)

M = <S’A7 Pa R,')/>
e Set of states S
e Set of actions A

e Transition probabilities P(s'|s, a)

Immediate reward R(s, a)

Discount factor v € (0,1)

| Action
. R —
/f ﬁh.
State,

Reward



Bellman Equation and Dynamic Programming

Optimal value function V* satisfies Bellman equation

Vse S, Vi(s) = max (R(s,a) + YEs wp(1s,0)[V*(s")])

ac

TV*(s)

Well-known facts of Bellman operator 7

e T is v-contraction: ||[TVy —T Vol <7 |[Vi — Vol
e Hence, V, TV, T2V, T3V, ... — V* (“fixed point")

e Mathematical foundation of value iteration, TD()\), Q-learning, etc.
in the exact (= finite-MDP) case



When Bellman Meets Gauss: Approximate DP

In practice, V* is often approximated

e Eg: least-squares fit on linear models or neural networks, ...
e Composing 7 and approximation loses contraction
e Many known divergent examples

Baird (93), Boyan & Moore (95), Tsitsiklis & Van Roy (96), ...

e Limited positive theory or algorithms
Gordon (96), Tsitsiklis & Van Roy (97), Lagoudakis & Parr (03), Sutton
et al. (08, 09), Maei et al. (10), ...

Functional Approximations and Dynamic
Programming

A major open problem for decades. By Richard Bellman and Stuart Dreyfus
Math. Tables & Other Aids Comp. (1959)



Does It Matter in Practice?

Many empirical successes of (double, dueling) DQN, A3C, ...
in video games, Go, robotics, dialogue management, ...

but often with surprises:
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The Deadly Triad (Controlled Case)

Existing RL algorithms risk divergence in the “deadly triad":

e (nonlinear) function approximation
e bootstrapping

e off-policy learning
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Why Solving Bellman Equation is Hard?

A natural objective function for solving V =T V:

min ||V —TV|?
1 N————
“Bellman error/residual”

= minE, [(V(s) — max(R(s, a) + 1Egs.a[V(s)])?

° : breaks smoothness and continuity

e Difficulty #2: typical SGD gives biased gradient, known as “double
sample” issue (Baird 95):

(o 4+ BerealVie(S)) #  Earpen [ +7Viu(5))?]



Addressing Difficulty #1: Nesterov Smoothing

V(S) = maax (R(S, 8)+’YE5’\5,2[V(5/)])
V) = max Y 6ls) (R(59) + 1 Ewnal V() AHCx(15)
e & entropic regularization
=TAV(s)

The smoothed Bellman operator 7, may be derived differently
Rawlik+ (12), Fox+ (16), Ne+ (17), Nachum+(17), Asadi & Littman (17), ...



Properties of 7,

TaV(s) := 1 > w(als) (R(s,a) + 1Es s o[V(s)]) +AH((-]s))

(s R

Still a y-contraction

Existence and uniqueness of fixed point V¥
Controlled bias: ||[Vy — V*[|__ = O(M/(1—7))
Temporal consistency (as in PCL of Nachum+ (17))

Vs,a:  Vi(s) = R(s,a) + 7Ey s a[Vx(s)] — Alog 73 (als)



Addressing : Legendre-Fenchel Transformation

mvin E. [( V(s)— maa><(R(S, a)+ 'Y]Es’\s.a[v(s/)])2:|

ﬂ (by Nesterov smoothing)

min E , R(s,a) + W}Es/\s.a[v(s/)] — Aogm(als) — V(s)

, T

denoted xs,

M (L-F transform: sta = max(2xs,y — y2))
y€eR

. 2
il VerEE)X(AES’a’S/ [(2v(s, a)xs,a — v(s,a)%)]

The last step also applies the interchangeability principle
(Rockafellar & Wets 88; Shapiro & Dentcheva 14; Dai+ 17)



Reformulation of Bellman Equation

We have now turned a fixed point into a saddle point:

min max Es , ¢ |:2V(S, a) (R(s7 a) +vV(s') — Mogr(als) — V(s))

V.r v
— (s, a)ﬂ

e Well-defined objective without requiring double samples

e May be optimized by gradient methods (SGD/BackProp, ...)
e See paper for a slightly more general version

e Special cases: GTD2, PCL, ...

e Inner maximum achieved when v equals A-smoothed Bellman error
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SBEED: Smoothed Bellman Error EmbeDding

Algorithmic ideas

e Parameterize (V,m;v) by (wy, wy; w,)
e Stochastic-gradient updates on (wy, w,) and ascent on w,,

e Two-time-scale updates for primal and dual variables; or
e Exact maximization if concave in w,

e Our implementation uses stochastic mirror descent

Algorithmic advantages

e Agnostic to whether data is on- or off-policy
e May be used in batch (e.g., experience replay) or online mode
e Extensible to multi-step and eligibility traces cases

e Efficiently implemented (only first-order updates needed)



SBEED Convergence (Batch Case)

Define ¢(V,m):=max, L(V,m, ), and assume

e V/is Lipschitz-continuous
e the stochastic gradient has finite variance

e stepsizes are properly set
Theorem. SBEED solution satisfies E[||VZ( Vi, 7g)[]] — 0

e Building on results of Ghadimi & Lan (13)
e See paper for variants of convergence results ...

e ... and statistical/generalization analyses



e Use Mujoco on OpenAl as benchmark
e Compare to state-of-the-art baselines:

e Dual-AC (Dai et al. 18)
e TRPO (Schulman et al. 15)
e DDPG (Lillicrap et al. 15)

(from http:/ /www.mujoco.org)



Role of Smoothing Parameter )\
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Comparison against Baselines
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Conclusions

Contributions
e A saddle-point reformulation of Bellman equation
e New algorithm SBEED with guaranteed convergence

e Promising empirical results on standard benchmark

Further remarks

e Many directions for future research

e Much efforts of finding true gradient RL algorithms
GTD (Sutton et al. 08), GTD2 (Sutton et al. 09), ...
e Deep connection to optimization
Mahadevan et al. (14), Macua et al. (15), ...
e Stronger algorithms based on new optimization techniques
Liu et al. (15, 16), Dai et al. (17, 18), Du et al. (17), Wang (17), Chen
et al. (18), ...
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Divergence Example of Tsitsiklis & Van Roy (96)

Starting with w(®) £ 0,
least-squares value iteration diverges when v > 5/6,
although V* may be exactly represented (with w* = 0).



Online SBEED Learning with Experien

Algorithm 1 Online SBEED learning with experience replay

1: Initialize w =

(wy, Wy, w,) and 7, randomly, set €.

2: for episodei =1,...,7 do
3: forsizek=1,...,K do
4: Add new transition (s, a, 7, s") into D by executing
behavior policy 7.
5:  end for
6. for iteration j = 1,..., N do
7: Update w?, by solving
min Ep.,.0) [(0(s.0.8) = p(s.))"].
8: Decay the stepsize (; in rate O(1/5).
9: Compute the stochastic_gradients w.r.t. wy and
Wy as VwVK(V ) and VLL,E(V 7).
10: Update the parameters of primal function by solv-
ing the prox-mappings, i.e.,
update V: wv =P- 1(G Ve wy !l ((V, 7))
update 11wl =P, yi-1 (CJV (V. m))
11:  end for
12:  Update behavior policy m, = 7™

13: end for




Role of Bootstrapping Distance k
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Role of Dual Embedding 7
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