Keynote Talk at 2021 KDD Workshop on Multi-Armed Bandits and Reinforcement Learning

A Map of Bandits for E-commerce

Yi Liu, Lihong Li Aug 15th, 2021

MarbleKDD 2021

Summary

- The rich Bandit literature offers a diverse toolbox of algorithms
- Hard for practitioners to find the right solution for problem at hand
 - Typical textbooks focus on designing and analyzing algorithms
 - Typical surveys present a list of individual applications
- This talk: a "map" towards closing the gap in mapping applications to appropriate Bandit algorithms.
 - Focus on a small number of key decision points related to reward/actions
 - Focus on E-commerce examples, but applicable to other applications

What video to recommend to maximize member satisfaction?

WHO'S WATCHING? ✓
 YI

කු

WHOS WHOS WATCHING?

maximize member satisfaction?

If satisfaction is defined when member streams.

Home Free to me Store Channels Categories 🗸 My Stuff Deals

rime video

WHO'S WATCHING?

What video to recommend to maximize member satisfaction?

If satisfaction is defined when member streams.

Bandit algorithm: <u>Bayesian Linear Probit Regression (BLIP)</u> for reward modeling + Thomson Sampling for exploration

- $r_t = 1$ if streaming, and 0 otherwise
- $E[r_t] = \Phi(\boldsymbol{w} \cdot \boldsymbol{\phi}(a_t))$
- Assume *w*'s follow Gaussian distribution and enforce the assumption when updating.

If satisfaction is defined when member streams. If we measure satisfaction by how long they spend on watching videos.

Bandit algorithm: <u>Bayesian Linear Probit Regression (BLIP)</u> for reward modeling + Thomson Sampling for exploration

$$\mathbf{X} \cdot - r_t = 1$$
 if streaming, and 0 otherwise

$$\mathbf{X} \cdot \frac{E[r_t] - \Phi(\mathbf{w} \cdot \boldsymbol{\phi}(a_t))}{E[r_t] - \Phi(\mathbf{w} \cdot \boldsymbol{\phi}(a_t))}$$

• Assume *w*'s follow Gaussian distribution and enforce the assumption when updating.

7

If satisfaction is defined when member streams. If we measure satisfaction by how long they spend on watching videos.

How to recommend **a subset of videos** to maximize member satisfaction?

Bandit algorithm: <u>Bayesian Linear Probit Regression (BLIP)</u> for reward modeling + Thomson Sampling for exploration

$$\mathbf{X} \cdot - r_t = 1$$
 if streaming, and 0 otherwise

$$\mathbf{X} \cdot \frac{E[r_t] - \Phi(\mathbf{w} \cdot \boldsymbol{\phi}(a_t))}{E[r_t] - \Phi(\mathbf{w} \cdot \boldsymbol{\phi}(a_t))}$$

• Assume *w*'s follow Gaussian distribution and enforce the assumption when updating.

Action is a combinatorial object.

What marketing content to recommend to maximize offer signup?

Bandit algorithm: <u>Bayesian Linear Probit Regression (BLIP)</u> for reward modeling + Thomson Sampling for exploration

- $r_t = 1$ if streaming, and 0 otherwise
- $E[r_t] = \Phi(\boldsymbol{w} \cdot \boldsymbol{\phi}(a_t))$?
- Assume *w*'s follow Gaussian distribution and enforce the assumption when updating.

Which Bandit algorithms are for your problem?

A Map of Bandit

Upsell the \$9.99 Premium membership plan

Map Entry?

Upsell the \$9.99 Premium membership plan

Map Entry? No!

Upsell the \$9.99 Premium membership plan

Spotify[®]

- Rewards for *all* actions are observed.
- It is a full-information setting.
- Supervised learning should be considered.

Upsell the \$9.99 Premium membership plan

Map Entry? Yes!

Only the reward of the selected action is returned.

Upsell the \$9.99 Premium membership plan

?

Map Entry?

Upsell the \$9.99 Premium membership plan

t = 0

t = 1

?

0

Just hit next.

...

Map Entry? Yes!

- Consider the dependency between actions.
- Reason with long-term rewards.
- Bandit is a good baseline for more general reinforcement learning setting.

Upsell the \$9.99 Premium membership plan

t = 0

t = 1

...

Bandit Problems by Reward Properties

Bandit Problems by Reward Properties

Node 1: Binary reward

Node 1: Binary reward

Algorithm 3 Regularized logistic regression with batch updates Require: Regularization parameter $\lambda > 0$. $m_i = 0, q_i = \lambda$. {Each weight w_i has an independent prior $\mathcal{N}(m_i, q_i^{-1})$ } for $t = 1, \dots, T$ do Get a new batch of training data $(\mathbf{x}_j, y_j), j = 1, \dots, n$. Find w as the minimizer of: $\frac{1}{2} \sum_{i=1}^d q_i (w_i - m_i)^2 + \sum_{j=1}^n \log(1 + \exp(-y_j \mathbf{w}^\top \mathbf{x}_j))$. $m_i = w_i$ $q_i = q_i + \sum_{j=1}^n x_{ij}^2 p_j (1 - p_j), p_j = (1 + \exp(-\mathbf{w}^\top \mathbf{x}_j))^{-1}$ {Laplace approximation} end for

Reward = 1 if customer streams; 0 otherwise.

Ref:

O. Chapelle and L. Li, "An empirical evaluation of Thompson sampling," in NIPS, 2011.

Node 1: Binary reward

Algorithm 3 Regularized logistic regression with batch updates Require: Regularization parameter $\lambda > 0$. $m_i = 0, q_i = \lambda$. {Each weight w_i has an independent prior $\mathcal{N}(m_i, q_i^{-1})$ } for $t = 1, \dots, T$ do Get a new batch of training data $(\mathbf{x}_j, y_j), j = 1, \dots, n$. Find w as the minimizer of: $\frac{1}{2} \sum_{i=1}^{d} q_i (w_i - m_i)^2 + \sum_{j=1}^{n} \log(1 + \exp(-y_j \mathbf{w}^\top \mathbf{x}_j))$. $m_i = w_i$ $q_i = q_i + \sum_{j=1}^{n} x_{ij}^2 p_j (1 - p_j), p_j = (1 + \exp(-\mathbf{w}^\top \mathbf{x}_j))^{-1}$ {Laplace approximation} end for

Reward = 1 if customer streams; 0 otherwise.

Ref:

O. Chapelle and L. Li, "An empirical evaluation of Thompson sampling," in NIPS, 2011.

Node 2: Numerical reward

Algorithm 3 Regularized logistic regression with batch updates Require: Regularization parameter $\lambda > 0$. $m_i = 0, q_i = \lambda$. {Each weight w_i has an independent prior $\mathcal{N}(m_i, q_i^{-1})$ } for $t = 1, \dots, T$ do Get a new batch of training data $(\mathbf{x}_j, y_j), j = 1, \dots, n$. Find w as the minimizer of: $\frac{1}{2} \sum_{i=1}^{d} q_i (w_i - m_i)^2 + \sum_{j=1}^{n} \log(1 + \exp(-y_j \mathbf{w}^\top \mathbf{x}_j))$. $m_i = w_i$ $q_i = q_i + \sum_{j=1}^{n} x_{ij}^2 p_j (1 - p_j), p_j = (1 + \exp(-\mathbf{w}^\top \mathbf{x}_j))^{-1}$ {Laplace approximation} end for

Reward is numerical.

Node 2: Numerical reward

What if it is not cost free to take an action? What if every reward is received at a cost?

Free shipping

Free shipping

Special offer

Ref:

W. Ding, T. Qin, X. Zhang, and T. Liu, "Multi-armed bandit with budget constraint and variable costs," in AAAI, 2013.

🔍 All 🛄 Images 🗉 News 📀

About 8.650.000.000 results (1.04 second

Maximize expected total reward $E\left[\sum R_{i,t}\right]$ given that every bid costs $c_{i,t}$ and the budget is capped at B.

 Algorithm 1 UCB-BV1/UCB-BV2

 Initialization: Pull each arm i once in the first K steps, set

 t = K t = K

 1: while $\sum_{s=1}^{t} c_{a_s,s} \leq B$ do
 2: Set t = t + 1.

 3: Calculate the index $D_{i,t}$ of each arm i as follows.
 UCB-BV1

 Exploitation
 $D_{i,t} = \frac{\overline{r}_{i,t}}{\overline{c}_{i,t}} + \frac{(1 + \frac{1}{\lambda})\sqrt{\frac{\ln(t-1)}{n_{i,t}}}}{\lambda - \sqrt{\frac{\ln(t-1)}{n_{i,t}}}}$

- The add of the term guarantees a regret bound of O(ln(B)).
- The proof utilizes Chernoff-Hoeffding inequality as in most UCB algorithms while recognizing costs.
- λ is lower bound of the expected costs across arms.

Ref:

W. Ding, T. Qin, X. Zhang, and T. Liu, "Multi-armed bandit with budget constraint and variable costs," in AAAI, 2013.

\$29.00

Peel

\$40.00

Casetify

Free shipping

\$55.00

Casetify

Free shipping

\$75.00

Casely

Special offer

\$17.99 \$30

Society6

• λ_t is estimated as the estimated minimum of the expected costs by using their empirical observations.

Ref:

W. Ding, T. Qin, X. Zhang, and T. Liu, "Multi-armed bandit with budget constraint and variable costs," in AAAI, 2013.

Node 5: Fixed (bounded) reward delays

For news or social media, feedback is typically not able to come back immediately because of various runtime constraints. Instead it usually arrives in batches over a certain period of time.

Node 5: Fixed (bounded) reward delays

For news or social media, feedback is typically not able to come back immediately because of various runtime constraints. Instead it usually arrives in batches over a certain period of time.

Thompson sampling is robust to delay in reward.

Ref:

O. Chapelle and L. Li, "An empirical evaluation of Thompson sampling," in NIPS, 2011.

What if the delay is not fixed/bounded but indefinite?

- Have you watched a movie on a weekend because of a recommendation during the week?
- Have you bought a product a month after your saw its advertisement?

Keep shopping for

Maximize expected total reward $E\left[\sum R_{i,t}\right]$ given there is indefinite delay in receiving the reward signal.

CREA Bar Sink Faucet,... \$**79**95

AguaStella AS1010BN... Or state as:

Maximize expected total reward $E\left[\sum R_{i,t}\right]$ when the learner only observes delayed positive events.

Modern Bar Sink Fauce... RODDEX Wet Bar Sink F...

\$5900

\$**38**¹⁹

Keep shopping for

CREA Bar Sink Faucet,...

Maximize expected total reward $E[\sum R_{i,t}]$ given there is indefinite delay in receiving the reward signal.

Aguastella AS1010BN... Or state as: \$7995

Maximize expected total reward $E[\sum R_{i,t}]$ when the learner only observes delayed positive events.

Modern Bar Sink Fauce... RODDEX Wet Bar Sink F...

\$**59**00

\$**38**¹⁹

Using surrogate metrics, same-day buy instead of waiting for days/weeks, is a pragmatic way to deal with delay.

Keep shopping for

AguaStella AS1010BN... Or state as: CREA Bar Sink Faucet,... \$**79**95

\$**38**¹⁹

Maximize expected total reward $E\left[\sum R_{i,t}\right]$ given there is indefinite delay in receiving the reward signal.

Maximize expected total reward $E\left|\sum R_{i,t}\right|$ when the learner only observes delayed positive events.

If a reward has not converted within *m* rounds, the algorithm assumes it will never convert.

Algorithm 1 OTFLinUCB

Input: Window parameter m > 0, confidence level $\delta >$ 0 and $\lambda > 0$. for t = 2, ..., T do Receive action set A_t Compute width of confidence interval:

$$\alpha_{t,\delta} = 2f_{t,\delta} + \sum_{s=t-m}^{t-1} \|A_s\|_{V_t(\lambda)^{-1}}$$

Compute the least squares estimate $\hat{\theta}_t^{W}$ using (2)

Compute the optimistic action: $A_{t} = \arg \max \left\langle a, \hat{\theta}_{t}^{\mathsf{W}} \right\rangle + \alpha_{t,\delta} \left\| a \right\|_{V_{t}(\lambda)^{-1}}$

Exploitation

Play A_t and receive observations end for

Ref:

C. Vernade, A. Carpentier, T. Lattimore, G. Zappella, B. Ermis, and M. Brueckner, "Linear bandits with stochastic delayed feedback," in ICML, 2020.

\$5900

Exploration

Keep shopping for

CREA Bar Sink Faucet,... AguaStella \$3819 \$7995

Maximize expected total reward $E\left[\sum R_{i,t}\right]$ given there is indefinite delay in receiving the reward signal.

AguaStella AS1010BN... Or state as:

Maximize expected total reward $E[\sum R_{i,t}]$ when the learner only observes delayed positive events.

If a reward has not converted within m rounds, the algorithm assumes it will never convert.

Algorithm 1 OTFLinUCB

Input: Window parameter m > 0, confidence level $\delta > 0$ and $\lambda > 0$. for t = 2, ..., T do Receive action set A_t Compute width of confidence interval:

$$\alpha_{t,\delta} = 2f_{t,\delta} + \sum_{s=t-m}^{t-1} \|A_s\|_{V_t(\lambda)^{-1}}$$

Compute the least squares estimate $\hat{\theta}_t^{w}$ using (2)

 L_2 -Regularized least square estimation where rewards that convert after more than mrounds are ignored.

Ref:

C. Vernade, A. Carpentier, T. Lattimore, G. Zappella, B. Ermis, and M. Brueckner, "Linear bandits with stochastic delayed feedback," in ICML, 2020.

Modern Bar Sink Fauce... RODDEX Wet Bar Sink F...

\$**59**00

Bandit Problems by Reward Properties

- No distribution assumption -> Adversarial (7)
- Action preference instead of absolute reward -> Dueling(8)
- Reward depends on multiple actions -> aggregated 9 10

Bandit Problems by Reward Properties

Nodes 3–10 are not exhaustive as the splits are not mutually exclusive.

For instance, an adversarial Bandit can also be a dueling one and there can be delay in reward. In practice, however, such combinations appear uncommon.

Common Action Types

The baseline case:

pull an arm and observe a reward afterwards

Slate Actions

Return a ranked result list for user's search query

The goal is to maximize the total revenue per search result return, while you can track the revenue for each shown product.

Slate Actions

Return a ranked result list for user's search query

Q All - amazon echo ne Video 🛛 Buy Again Shopper Toolkit Groceries 👻 Livestreams Health & Household Amazon Basics Beauty & Personal Care Coupor Best Seller Echo Dot (3rd Gen) - Smart speaker with Alexa - Charcoal ******* * 893,241 \$3999 Or \$8.00/month for 5 months (no fees or interest) vprime Overnight 7 AM - 11 AM FREE delivery overnight Amazon's Choice Echo (4th Gen) | With premium sound, smart home hub, and Alexa | Charco ******** * 70.859** \$9999 r CERTIFIED FOR humans Or \$20.00/month for 5 months (no fees or interest) vprime Overnight 7 AM - 11 AM FREE delivery overnight More Buying Choices \$69.99 (4 used & new offers) W Climate Pledge Friendly See 1 certification

The goal is to maximize the total revenue per search result return, while you can track the revenue for each shown product.

⇔ Node 10; Reward Granularity: aggregated over each action

Semi-bandit is defined.

Slate Actions

Return a ranked result list for user's search query

All 👻 amazon echo -Groceries - Livestreams Health & Household Amazon Basics Beauty & Personal Care Coupo Best Seller Echo Dot (3rd Gen) - Smart speaker with Alexa - Charcoal ******* * 893,241 \$3999 Or \$8.00/month for 5 months (no fees or interest) vprime Overnight 7 AM - 11 AM FREE delivery overnight Amazon's Choice Echo (4th Gen) | With premium sound, smart home hub, and Alexa | Charco ********* * 70.859** \$9999 CERTIFIED FOR humans Or \$20.00/month for 5 months (no fees or interest) vprime Overnight 7 AM - 11 AM FREE delivery overnight More Buying Choices \$69.99 (4 used & new offers) W Climate Pledge Friendly See 1 certification

The goal is to maximize the total revenue per search result return, while you can track the revenue for each shown product. Algorithm 2 Combinatorial Linear Thompson Sampling

Input: Combinatorial structure (E, \mathcal{A}) , generalization matrix $\Phi \in \mathbb{R}^{L \times d}$, algorithm parameters $\lambda, \sigma > 0$, oracle ORACLE

Initialize $\Sigma_1 \leftarrow \lambda^2 I \in \mathbb{R}^{d \times d}$ and $\bar{\theta}_1 = 0 \in \mathbb{R}^d$ for all t = 1, 2, ..., n do Sample $\theta_t \sim N(\bar{\theta}_t, \Sigma_t)$ Compute $A^t \leftarrow \text{ORACLE}(E, \mathcal{A}, \Phi \theta_t)$ Choose set A^t , and observe $\mathbf{w}_t(e), \forall e \in A^t$ Compute $\bar{\theta}_{t+1}$ and Σ_{t+1} based on Algorithm 1 end for

Find the optimal list given the conditions, using combinatorial optimization algorithms.

Ref:

Z. Wen, B. Kveton, and A. Ashkan, "Efficient learning in large-scale combinatorial semi-bandits," in ICML, 2015

Slate Actions (position and diversity effects)

Return a ranked result list for user's search query

All 👻 amazon echo -Groceries - Livestreams Health & Household Amazon Basics Beauty & Personal Care Coupor Best Seller Echo Dot (3rd Gen) - Smart speaker with Alexa - Charcoal ******* * 893,241 \$3999 Or \$8.00/month for 5 months (no fees or interest) vprime Overnight 7 AM - 11 AM FREE delivery overnight Amazon's Choice Echo (4th Gen) | With premium sound, smart home hub, and Alexa | Charco ******** * 70.859** \$9999 CERTIFIED FOR humans Or \$20.00/month for 5 months (no fees or interest) vprime Overnight 7 AM - 11 AM FREE delivery overnight More Buying Choices \$69.99 (4 used & new offers) W Climate Pledge Friendly See 1 certification

The goal is to maximize the total revenue per search result return, while you can track the revenue for each shown product. Algorithm 2 Combinatorial Linear Thompson Sampling

Input: Combinatorial structure (E, \mathcal{A}) , generalization matrix $\Phi \in \mathbb{R}^{L \times d}$, algorithm parameters $\lambda, \sigma > 0$, oracle ORACLE

Initialize $\Sigma_1 \leftarrow \lambda^2 I \in \mathbb{R}^{d \times d}$ and $\bar{\theta}_1 = 0 \in \mathbb{R}^d$ for all t = 1, 2, ..., n do Sample $\theta_t \sim N(\bar{\theta}_t, \Sigma_t)$ Compute $A^t \leftarrow \text{ORACLE}(E, \mathcal{A}, \Phi \theta_t)$ Choose set A^t , and observe $\mathbf{w}_t(e), \forall e \in A^t$ Compute $\bar{\theta}_{t+1}$ and Σ_{t+1} based on Algorithm 1 end for

Find the optimal list given the conditions, using combinatorial optimization algorithms.

Ref:

Z. Wen, B. Kveton, and A. Ashkan, "Efficient learning in large-scale combinatorial semi-bandits," in ICML, 2015

Combinatorial Actions

Content layout on a webpage for upselling membership/subscription

	x
Image	Accept button x
	Reject button
	Image x3

Challenges:

- Combinatorial explosions of actions
- Interaction effects between sub-actions

Combinatorial Actions

Content layout on a webpage for upselling membership/subscription

Challenges:

- Combinatorial explosions of actions
- Interaction effects between sub-actions

⇔ Node 9; Reward Granularity: aggregated over all actions

Combinatorial Actions

Content layout on a webpage for upselling membership/subscription

Title text		x
Offer details	Image	Accept button x
		Poiest hutton

Challenges:

- Combinatorial explosions of actions
- Interaction effects between sub-actions

Algorithm: multivariate Bandit

Ref:

D. N. Hill, H. Nassif, Y. Liu, A. Iyer, and S. Vishwanathan, "An efficient bandit algorithm for realtime multivariate optimization," in KDD, pp. 1813–1821, 2017.

Common Action Types

Next question to ask:

Do we formulate Bandit differently if different sizes of the action set?

Action Set Size

Model actions as categorical variables.

Bandits with discrete actions

Represent each action as a feature vector in the reward function.

- Video recommendation
- Product recommendation
- Inventory buying
- Advertisement recommendation
- Fashion style recommendation
- Skill recommendation for virtual assistant
- Algorithm selection
- Marketing message recommendation

~100 or less than

~ thousands

- Discretize the action space.
- Continuous Bandit

Bandits with continuous actions

• Dynamic pricing

infinite

• Hyper parameter search

Feature Engineering

- Determining input features: ϕ_a (for action), ϕ_x (for context)
 - Needed for large action/context spaces
 - Used in modeling reward: $E[r] = f(\phi_a, \phi_x)$, or policy
- Linear bandits examples
 - $E[r] = w \cdot (\phi_a \otimes \phi_x)$ with unknown weights w
 - Learn lower-dimensional embeddings as features
- Nonlinear bandits examples
 - Kernelised Bandits Michal et al. "Finite-Time Analysis of Kernelised Contextual Bandits," UAI, 2013.
 - Neural Bandits Zhou et al. "Neural contextual bandits with UCB-based exploration," ICML, 2020.

Offline (Off-policy) Policy Evaluation

- Often critical to evaluate a new policy offline before deploying it.
- Challenge: we don't know user reaction to actions different from the log
- Similar to counterfactual analysis in causal inference.
- Usually, we assume stationary policy. Common methods:
 - Simulation: Bayir, et al. "Genie: An open box counterfactual policy estimator for optimizing sponsored search marketplace," in WSDM, 2019.
 - Inverse propensity scoring and self-normalized variants: A. Swaminathan and T. Joachims, "The selfnormalized estimator for counterfactual learning," in NIPS, 2015.
 - Doubly robust evaluation: M. Dudik, J. Langford, and L. Li, "Doubly robust policy evaluation and learning," in ICML, 2011.

Others

- <u>Best-arm identification</u>. the goal is not to maximize reward during an experiment, but to identify the best action (e.g., best marketing campaign strategy) at the end of the experiment.
- <u>Privacy-preserving bandits</u>. A system that updates local agents by collecting feedback from other local agents in a differentially-private manner.

Which Bandit algorithms are for your problem?

Business problems with different characteristics — A zoo of Bandit algorithms

What marketing content to recommend to maximize offer signup?

Use our paper as a map to find the answer \odot

